OVERVIEW OF THE INSIGHT DENTAL IMPLANT DELIVERY SYSTEM

The IDS system comes in a unit dose implant system where its advantage provides sterile instrumentation in one single-use kit. It is organized to complement surgical sequence in a simple delivery system. The IDS implant system packages both the implant and abutment in separate individually sterile compartments. This is novel to the IDS system. This packaging design provides unique advantages over traditional systems which include:

- Eliminating need to sterilize surgical and restorative kits after each surgery
- Eliminating potential for cross contamination
- Mitigating improper sterilization techniques
- New instruments presented for every new patient
- No lost or damaged instruments
- Minimizing turnaround time

*Note: Images shown in the catalog may not be to scale.
THE IDS WILL CONSIST OF FOUR COMPONENTS IN A VARIETY OF DIAMETERS AND LENGTHS:

- 3.5mm implant at lengths of 8mm, 10mm, and 12mm
- 3.8mm implant at lengths of 8mm, 10mm, and 12mm
- 4.6mm implant at lengths of 8mm, 10mm, and 12mm
- 5.4mm implant at lengths of 8mm, 10mm, and 12mm

1. Each implant diameter will consist of a healing cap, healing abutment, tapering healing abutment, impression coping, and final abutment. All components are manufactured from Titanium Alloy (Ti-6Al-4V-ELI)
OPENING THE KIT

When opening the kit, the user should be careful with the lids. Once the Tyvek is peeled from any corner, there will be lids that are holding the components in.

• Place hand on outer edge of tray firmly holding it down.
• Place opposite hand in one of the two crevices in the corners.
• Move finger under the lid.
• Move finger from the crevice following the lid.
• Keep following the lid until the lips come off with ease.

SURGICAL SIDE

PLACE HAND OUTSIDE OF TRAY. HOLD FIRMLY

PLACE FINGER IN CREVICE IN ONE OF THE TWO CORNERS. ENSURE FINGER IS UNDER THE LID. SLIDE FINGER UNDER THE LID AROUND THE TRAY.

RESTORATIVE SIDE

FOLLOW RED LINE WHEN SLIDING FINGER AROUND THE TRAY. SAME THING FOR RESTORATIVE SIDE.
OVERVIEW OF THE IMPLANT ITEMS

The Implant contains a tapered body only at the bottom portion type. The abutment component has a tapered body with a straight wall design. The implant and abutment components mate with an anti-rotation connection and are secured with the locking screw. Abutments have a male hex and bevel conical shape that allows the seating of the abutment into the implant with ease. The healing abutment, healing cap, and tapering healing abutment has a simple screw type design and can be inserted or removed into the implant with the same bevel conical shape.

• Connection of the final abutment and implant eliminates rotational movements.
• The healing abutment and tapering healing abutment both stick 3mm out when inserted into the implant. The healing abutment is rounded off and the tapering healing abutment follows the same taper as the impression coping and final abutment.
• The Healing Cap is a low-profile cap that is placed below the soft tissue.

Use the Healing Cap Driver to insert the caps. The drivers contain a 1.27mm tapered hex. The tapered hex allows the tool to be retained into the caps.
IMMEDIATE TEMPORIZATION

Placing a temporary prosthesis during the Implant placement procedure can be an option with the IDS kit. Use the Impression Coping and locking screw to tighten down on the implant.

PRODUCT APPLICATION PROCEDURE

Obtain a calibrated radiograph or 3D image of the proposed site for the dental implant. Ensure that there is at least 1.5 mm of bone between the proposed implant and any natural adjacent tooth, or 3 mm between adjacent implants. Ensure that the bony ridge is of adequate thickness and that the implant will not impinge upon any vital structures such as nerves or sinus cavities.

Reflect a full thickness periodontal flap, if desired, under adequate local anesthesia to reveal as much of the bone ridge as is needed to place implant.

An irrigated latch lock surgical hand-piece should be used throughout this procedure.

Use the pilot drill to prepare the first pass of the osteotomy at a speed not to exceed 400 RPM to a depth to match the length of the chosen implant.

Verify depth, parallelism and orientation of the osteotomy with the depth gauge/paralleling pin provided in the kit. This can be done after each new drill in the surgical kit series by placing the depth gauge side of the orienting pin in osteotomy and taking a radiograph if desired.

Decrease the RPM not to exceed 350 rpm, and with the next drill in the series, enlarge the osteotomy, correcting parallelism as needed and reverifying depth and orientation as needed with the paralleling pin. Continue enlarging the osteotomy and verifying depth and parallelism as needed until the last drill in the sequence has been used, decreasing the maximum RPM by 50 with each increase in drill size.
Before drilling, it is recommended for the surgeon to understand where the depth markings are placed. Prior to placing the implant, use the bone tap to decrease the resistance of the osteotomy. In Type 1 dense bone, it may be needed to tap the entire depth of the osteotomy. In type 2 or 3 bone, it may be needed to tap the first one half of the bone. Type 4 bone may not require tapping at all. To tap, place the bone tap drill in the irrigated surgical hand-piece and set the speed not to exceed 50 RPM. Once desired tap depth has been reached, reverse the direction of the drill and back out the tap drill at a speed not to exceed 50 RPM. Do not attempt to remove the tap drill from the osteotomy while the tap drill is rotating in a forward direction.

Place the implant carrier bit (implant driver) on the surgical hand-piece and adjust the speed and torque of the handpiece. The speed should not exceed 15 RPM during placement of the implant body, and the torque should not exceed 20Ncm. Open the packaging of the implant body and engage the carrier to the implant body. Use care not to touch the external aspect of the implant with anything. Deliver the implant to the prepared osteotomy and place the implant, using care not to over torque the implant. If the hand-piece reaches its torque limit prior to full seating of the implant, the provided hand wrench may be used to complete the process. Once the implant is at preferred depth, place the healing cap over the implant with the provided thumb driver.

The healing cap should be finger tightened until just snug. After placing healing cap, close the flap with preferred suture method.

Once osseointegration has occurred, expose and remove the cover screw under adequate anesthesia.
Restorative System

Use one of the following procedures to restore the dental implant:

1. **Indirect (Closed-Tray) transfer Technique**

 Place the impression coping on the implant and secure it by finger tightening the locking screw. Orient the flat side to desired location.

 ![Diagram of Restorative System](image)

 - **Thumb Driver**
 - **Healing Cap Driver**
 - **Impression Coping**
 - **Locking Screw**

 Take a radiograph to ensure the copings are fully seated. Place the impression material of choice over the coping. Recommended to cover the Impression coping hole with the material. Remove excess material so that it is flush of the holes.

 ![Block Out Hole Diagram](image)
Ensure that the fit of the tray is applicable before injecting the impression material.

It is surgeon’s choice of impression material. Inject material around the copings. Allow the material to set according to manufactures recommendations. Unthread the impression coping from the implant. Transfer coping will usually be retained in impression once it is removed. If it remains on the abutment, gently remove it and insert it into the impression using the indexes to orient it correctly. Send the impression with transfer coping, locking screw and implant analog to the lab. Specify to the lab if you would like to use the stock abutment or have the lab fabricate a custom abutment. Once the abutment and crown have been returned from the lab, remove cover screw and place abutment in its proper orientation by finger tightening the retention screw. A radiograph may be used to confirm the abutment has been fully seated. Try in crown and ensure it is clinically acceptable, using radiographs as needed. Use the torque wrench to torque the retention screw to its final level. Place a barrier material such as PVS or wax to cover the head of the retention screw. Cement crown using adhesive material of choice, being especially careful to remove any excess or residual cement at the margin. Verify with radiographs as needed.

If desired, the stock abutment can be altered chairside during the first restorative appointment. In this event, prep the abutment and once satisfied, place the abutment and torque to its final level. Verify that the abutment is completely seated with a radiograph. Take a direct crown and bridge impression and send it to the lab. Place a barrier material such as PVS or wax to cover the head of the retention screw. A temporary crown may be fabricated and placed on the abutment with temporary cement. Once the crown is received from the lab, try in crown and ensure it is clinically acceptable, using radiographs as needed. Cement crown using adhesive material of choice, being especially careful to remove any excess or residual cement at the margin. Verify with radiographs as needed.